Algebraic list-decoding of error-correcting codes
نویسنده
چکیده
of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . xii Chapter
منابع مشابه
Ideal Error-Correcting Codes: Unifying Algebraic and Number-Theoretic Algorithms
Over the past five years a number of algorithms decoding some well-studied error-correcting codes far beyond their “error-correcting radii” have been developed. These algorithms, usually termed as listdecoding algorithms, originated with a list-decoder for Reed-Solomon codes [36, 17], and were soon extended to decoders for Algebraic Geometry codes [33, 17] and as also some number-theoretic code...
متن کاملEfficient root-finding algorithm with application to list decoding of Algebraic-Geometric codes
A list decoding for an error-correcting code is a decoding algorithm that generates a list of codewords within a Hamming distance from the received vector, where can be greater than the error-correction bound. In [18], a list-decoding procedure for Reed–Solomon codes [19] was generalized to algebraic–geometric codes. A recent work [8] gives improved list decodings for Reed–Solomon codes and alg...
متن کاملAlgebraic-geometric generalizations of the Parvaresh-Vardy codes
This paper is concerned with a new family of error-correcting codes based on algebraic curves over finite fields, and list decoding algorithms for them. The basic goal in the subject of list decoding is to construct error-correcting codes C over some alphabet Σ which have good rate R, and at the same every Hamming ball of (relative) radius p has few codewords of C, and moreover these codewords ...
متن کاملCyclotomic function fields, Artin–Frobenius automorphisms, and list error correction with optimal rate
Algebraic error-correcting codes that achieve the optimal trade-off between rate and fraction of errors corrected (in the model of list decoding) were recently constructed by a careful “folding” of the Reed-Solomon code. The “low-degree” nature of this folding operation was crucial to the list decoding algorithm. We show how such folding schemes useful for list decoding arise out of the Artin-F...
متن کاملAchieving List Decoding Capacity Using Folded Reed-Solomon Codes
We present error-correcting codes that achieve the information-theoretically best possible trade-off between the rate and error-correction radius. Specifically, for every 0 < R < 1 and ε > 0, we present an explicit construction of error-correcting codes of rate R that can be list decoded in polynomial time up to a fraction (1 − R − ε) of errors. At least theoretically, this meets one of the cen...
متن کامل